博客
关于我
机器学习之逻辑回归(Logistic Regression)精讲(附代码)
阅读量:760 次
发布时间:2019-03-23

本文共 447 字,大约阅读时间需要 1 分钟。

逻辑回归是一种广泛应用于分类任务的机器学习模型,尽管其名称中包含“回归”一词,但其核心目标与回归分析有所不同。逻辑回归专注于预测目标变量的取值属于其中一个类别,适用于解决二分类问题。

基本原理

逻辑回归的核心假设函数采用了sigmoid变换,将输入特征映射到0和1之间的概率范围。具体而言,假设函数的形式如下:

h(θ(x)) = 1

这表示在给定特征向量x和参数θ的条件下,模型预测的类别概率为1的可能性。通过sigmoid函数的转换,逻辑回归不仅能够处理非线性关系,还能将输出限定在(0,1)区间内,使其适合分类任务。

这个假设函数的设计考虑了以下关键点:

  • 非线性映射:sigmoid函数能够将线性模型扩展到非线性域,从而捕捉数据中的复杂模式。
  • 输出范围的限制:输出值被限制在(0,1)之间,符合分类任务中两类别的对立关系。
  • 可微性:sigmoid函数及其导数在实际应用中对优化算法(如梯度下降)具有重要意义。
  • 通过上述机制,逻辑回归能够有效区分两类别数据,并在实际应用中表现出较强的性能。

    转载地址:http://krlzk.baihongyu.com/

    你可能感兴趣的文章
    mysql union orderby 无效
    查看>>
    mysql v$session_Oracle 进程查看v$session
    查看>>
    mysql where中如何判断不为空
    查看>>
    MySQL Workbench 使用手册:从入门到精通
    查看>>
    mysql workbench6.3.5_MySQL Workbench
    查看>>
    MySQL Workbench安装教程以及菜单汉化
    查看>>
    MySQL Xtrabackup 安装、备份、恢复
    查看>>
    mysql [Err] 1436 - Thread stack overrun: 129464 bytes used of a 286720 byte stack, and 160000 bytes
    查看>>
    MySQL _ MySQL常用操作
    查看>>
    MySQL – 导出数据成csv
    查看>>
    MySQL —— 在CentOS9下安装MySQL
    查看>>
    MySQL —— 视图
    查看>>
    mysql 不区分大小写
    查看>>
    mysql 两列互转
    查看>>
    MySQL 中开启二进制日志(Binlog)
    查看>>
    MySQL 中文问题
    查看>>
    MySQL 中日志的面试题总结
    查看>>
    mysql 中的all,5分钟了解MySQL5.7中union all用法的黑科技
    查看>>
    MySQL 中的外键检查设置:SET FOREIGN_KEY_CHECKS = 1
    查看>>
    Mysql 中的日期时间字符串查询
    查看>>